If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2+13q+10=0
a = 3; b = 13; c = +10;
Δ = b2-4ac
Δ = 132-4·3·10
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-7}{2*3}=\frac{-20}{6} =-3+1/3 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+7}{2*3}=\frac{-6}{6} =-1 $
| -2x+x3x=9 | | 68=2x-2(5x-10) | | 1/2x-1/3=-4 | | -10+4p=-6 | | -8+2s=10-4s | | v=512 | | 25x-3(3x-7)=20+11x | | -2(s+5)+10=2 | | 1^2x-3=-4 | | 5p+3=10 | | 5u−4u=15 | | -5x+2(6x-4)=48 | | r-60/4=6 | | 2k-5=6k+10 | | –11−11k=–15k+17 | | x-0.06x=502332.88 | | 82k=4K+4 | | 3x-(-5)=44 | | 6=4(10)+b | | 9x-17=3x+7 | | 4x=11-7x | | q-1=5q+13 | | (5x-3)=-2 | | a=2033 | | 3a-9a=36 | | -(x+9)=+4 | | 88+35+x+15=180 | | 3(12+p)-7=-7 | | 2.5-4x=-6.8 | | -3(1-10x)=-303 | | x=159 | | 2x-84+11x=150 |